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Abstract. Though in the past few decades much effort has been de-
voted to reporting all k intersecting pairs in a planar set of n iso-oriented
rectangles, all the known algorithms using elementary data structures,
such as linked lists, are either not optimal, report some intersections
repeatedly or fail to report some altogether. We propose a simpler al-
gorithm that uses only linear arrays and that takes O(n log n + k) time
and O(n) space, which are the best possible under the algebraic RAM
model of computation. Our algorithm is designed for systems with lim-
ited resources, such as mobile 3D graphics, and can be implemented in
less than 100 lines of Java code.

1 Introduction

Bounding rectangles are commonly used to speed up algorithms for rendering,
modelling and animation [1–5]. Worst-case analysis often fails to predict the ac-
tual behaviour of the running time of geometric algorithms in practice, mainly
because worst-case scenarios are often very artificial and do not occur in prac-
tice, therefore realistic input models are considered [6]. Suri et al [7] analyzed
intersections among geometric objects in terms of two parameters: α, an upper
bound on the aspect ratio or elongatedness of each object; and σ, an upper
bound on the size disparity between the largest and smallest objects. If α and σ

are constants, the number of bounding-box intersections is proportional to the
number of actual object intersections [7]. Therefore, finding rectangle intersec-
tions quickly could considerably speed up rendering in graphics systems with
limited resources in general and in embedded systems in particular.

We consider the following problem: Given n rectangles with parallel sides
in the plane, report all pairs having at least one point in common. Theoretical
solutions have been known for many years, but rely heavily on sophisticated data
structures, such as range trees or segment trees [8–12].

A new approach, based on the divide-and-conquer, rather than the plane-
sweep paradigm was attempted by Lee [13]. Unfortunately, Lee’s approach is
faulty, and we feel it cannot even be rectified. Another divide-and-conquer ap-
proach proposed by Güting and Wood [14] was attempted to be exploited by
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by Güting and Schilling [15] to provide a practical algorithm using linked lists
only. However, their algorithm fails to report some intersecting pairs and reports
other pairs twice as we are going to demonstrate. Motivated by the practical im-
portance of the problem, Zomorodian and Edelsbrunner [16] also proposed a
algorithm recently. Though experimental evidence is provided that their algo-
rithm performs well in practice, unfortunately it is not optimal [17].

In Section 2 we briefly summarize the Güting-Schilling algorithm, giving rea-
sons why it cannot report all intersections and a counter-example to demonstrate
that the method they proposed to eliminate duplicates fails. In Section 3 we pro-
pose a simpler and more efficient algorithm using linear arrays only, and prove
that the proposed algorithm is optimal. Finally we give a brief reference to a
prototype Java implementation to demonstrate that our algorithm is not only
feasible, but also easy to implement in practice.

2 The Güting-Schilling Algorithm

The algorithm is based on separational representation, originally suggested by
Güting and Wood [14]. The idea is that each rectangle is represented twice: by
its left and right vertical edges. After pre-sorting all vertical edges of a list of
rectangles by x-coordinates, it is easy to achieve a balanced recursive subdivision.

The main procedure takes a set S of n iso-oriented rectangles as an input,
and it claims to produce all pairs of intersecting rectangles as an output. First it
creates a list V of the 2n vertical edges in non-decreasing order of x-coordinates.
Finally it calls a recursive procedure R(V, L, R, C), where the set V is an input
parameter and the sets L, R and C are output parameters generated by the
procedure itself. The output parameters L, R and C of R are discarded after
the first (top-level) call of R, and only used after subsequent recursive calls.
Before further explaining the sets L, R and C, we need a definition.

Definition 1 A rectangle is represented in a set of vertical edges V if and only

if at least one of its vertical edges is in V .

The set L (for left) is the set of y-projections of all rectangles represented in
V only by their left edge. Similarly, set R (for right) is the set of y-projections
of all rectangles represented in V only by their right edge. Finally, set C (for
complete) is the set of y-projections of all rectangles represented in V by both
their left and right edges.

For the basis of recursion by procedure R, assume that V contains only one
element, v = (x, side, id, yb, yt), where x is the x-coordinate of vertical edge v,
side is Left or Right, id is an integer identifying the rectangle with edge v

and finally yb and yt, respectively, are the bottom and top y-coordinate of the
rectangle. If side = Left, then L = v, R = ∅ and C = ∅, otherwise (if side =
Right) L = ∅, R = v and C = ∅.

If V contains more than one element, procedure R finds a vertical line ℓ that
splits the x-ordered input set V in two subsets V1 and V2 of approximately equal



size. Subset V1 is to the left, and subset V2 is to the right of ℓ. In the next step
R calls itself recursively as R(V1, L1, R1, C1) and R(V2, L2, R2, C2).

As a recursive invariant we assume that, after completion, R reports all
pairwise intersections of the rectangles represented in its input set (e.g., by writ-
ing them into memory or a disk file). In the rest of procedure R we only need
to report intersections between rectangles represented in V1 but not in V2 and
intersections between rectangles represented in V2 but not in V1.

Considering a rectangle r represented in V1 but not in V2, there are two
cases: 1) the right edge of r is either in V1 or 2) it is beyond to the right of all
edges in V2. Let A1 and B2 be the set of rectangles belonging to cases 1 and
2 respectively. Similarly, for the rectangles represented in V2 but not in V1 let
A2 be the set of rectangles with left edges in V2, and B1 the set of rectangles
with left edges beyond to the left of all edges in V1. According to Güting and
Schilling’s terminology, each rectangle in B1 spans subset V1 and therefore all
rectangles in A1. Similarly, each rectangle in B2 spans all rectangles in A2.

The crucial observation is that any rectangle b in B1 intersects all rectangles
in A1 with y-projection intersecting the y-projection of b. The same is true for the
sets A2 and B2. The Güting-Schilling algorithm proposes reporting intersections
only between rectangles in A1 and B1 and intersections between rectangles in A2

and B2 (in Step 4 of the recursive procedure on the top of page 100 [15]). Note,
however, that rectangles in B1 and B2 may also intersect, hence the Güting-
Schilling algorithm fails to report all intersecting pairs.

Since only the y-projections need to be checked, the problem is reduced to
a one-dimensional one. Güting and Schilling define (without giving the details)
an intersection operation ⊗ for two sets of rectangles A and B as

A ⊗ B := {(a, b)|a ∈ A, b ∈ B and the y-projections of a and b intersect}

where for any pair (a, b), a ∈ A, b ∈ B, a and b are represented in different sets of
vertical edges. The two recursive calls of R produce six sets, L1, R1, C1, L2, R2

and C2, from which the intersecting pairs not reported by the two recursive calls
need to be computed and reported, and also the output sets L, R and C need to
be computed. Procedure R continues as follows.

First all rectangles represented in both V1 and V2 are removed by computing
the sets X = L1 ∩ R2, B1 = R2 \ X and B2 = L1 \ X . It is easy to see that
R2 \ X is the set of y-projections of right edges with no matching left edges in
V1 and V2, hence R2 \ X spans V1. For similar considerations L1 \ X spans V2.

As arbitrary elements are removed, the six sets must be represented by linked

lists [15]. Set V , created in the main procedure, can be represented by a linear ar-
ray with elements sorted in non-decreasing order. During recursive calls, indices
marking subranges of this array can be passed down.

Set A1, introduced earlier, corresponds to R1 ∪ C1, i.e., to all the rectangles
with right edges in V1, and similarly set A2 corresponds to L2 ∪C2. However, it
should be noted that A⊗B can only be computed in linear time of its input and
output size if A and B are available in sorted order. Therefore we need the six
sets, L1, R1, C1, L2, R2 and C2 in sorted order by the yb field of their elements.



(If there are equal yb fields, the id fields can be used as a tie-break.) A procedure,
called ListMerge, also needed for merging sorted lists. A1 and A2 should now
be computed as A1 = ListMerge(R1, C1) and A2 = ListMerge(L2, C2).

Then we can compute and report the sets A1 ⊗ B1 and A2 ⊗ B2. Finally
we compute the output parameters of R as L = ListMerge(L2, B2), R =
ListMerge(R1, B1), C′ = ListMerge(C1, C2) and C = ListMerge(C′, X).

The algorithm presented above not only misses some intersecting pairs, but it
may report some pairs twice. To avoid the latter problem, Güting and Schilling
propose a modified recursive invariant : after completion R reports all pairwise
intersections in its input set if and only if least one of the rectangles in the pair
is represented by its left edge [15]).

We give a counter-example, with only three rectangles, to demonstrate that
the algorithm with the modified recursive invariant may not report valid inter-
sections. Let us consider the input given in Table 1 and shown in Fig. 2. There

id xl xr yt yb

1 107 175 103 151
2 184 274 111 197
3 213 249 128 176

Table 1. Input for a counter-example

Fig. 1. The three rectangles given in Table 1

is only one intersecting pair, rectangles 2 and 3. The x-coordinates of set V for
the first call of R are as follows:

107, 175, 184, 213, 249, 274

and in the third call, V2 will have the x-coordinates 213, 249 and 274. A further
subdivision might be 213 and 249 on the left-hand, and 274 on the right-hand



side. After the completion of these recursive calls, A1 will contain rectangle 2,
represented by its right vertical edge at x = 249 and B1 will contain rectangle 3,
represented again by its right vertical edge at x = 274. Though rectangles 2 and
3 have a valid intersection, it cannot be reported due to the modified recursive
invariant, because both rectangles represented only by their right edges.

If the subdivision of the set of vertical edges the x-coordinates 213, 249 and
274 were that 213 is on the left-, and 249 and 274 are on the right-hand side, the
algorithm would proceed slightly differently, but the result would be the same;
the pair 2,3 would not be reported.

3 The Proposed Algorithm

Though the first problem of the Güting-Schilling algorithm, i.e., missing some of
the intersecting pairs, could be corrected, the algorithm remains inefficient from
a practical point of view. First, it requires the merging of linked lists at each
level of the recursion. Second, computing and then discarding the large sets L,
R and C after the top-level call of R is wasteful.

We propose a much simpler and more efficient algorithm. One of the novelties
of our algorithm is based on the observation that in practice it is always more
efficient to split a sorted list than merging two sorted lists. This observation
also gives us the possibility of implementing the algorithm by using linear arrays
only. Our algorithm consists of three procedures.

The main procedure, called report, given as Algorithm 1, takes a set S of n

iso-oriented rectangles as an input, then it calls a recursive procedure, detect,
given as Algorithm 2. Procedure detect finds subsets of rectangles intersecting
in the x-dimension and calls a third procedure stab on pairs of such subsets.
Eventually procedure stab, given as Algorithm 3, reports all pairs of intersecting
rectangles as the output.

procedure report(S, n)
1 Let V be the list of x-coordinates of the 2n vertical edges of the n rectangles

in S sorted in non-decreasing order.
2 Let H be the list of n y-intervals corresponding to the bottom and top

y-coordinates of each rectangle.
3 Sort the elements of H in non-decreasing order by their bottom y-coordinates.
4 Call procedure detect(V, H, 2n).

Algorithm 1: The main procedure

Procedure stab finds pairwise intersections between y-intervals of rectangles
belonging to two different sets. We solve this problem as two symmetric batched
stabbing problems: given a list of points and a list of intervals, for each interval
report all the points contained by it. The points are the low endpoints of each
set of intervals in turn. Let A and B be two lists of y-intervals a1, a2, . . . , ap



procedure detect(V, H, m)
if m < 2 then return

else

1 let V1 be the first ⌊m/2⌋ and let V2 be the rest of the vertical edges
in V in the sorted order

2 let S11 and S22 be the set of rectangles represented only in V1 and V2

but not spanning V2 and V1, respectively
3 let S12 be the set of rectangles represented only in V1 and spanning V2;

let S21 be the set of rectangles represented only in V2 and spanning V1

4 let H1 and H2 be the list of y-intervals corresponding to the elements
of V1 and V2 respectively

5 stab(S12, S22); stab(S21, S11); stab(S12, S21)
6 detect(V1, H1, ⌊m/2⌋); detect(V2, H2, m − ⌊m/2⌋)

Algorithm 2: Finding subsets of rectangles intersecting in the x-dimension

and b1, b2, . . . , bq respectively, sorted by their lower endpoint in non-decreasing
order. |A| = p and |B| = q, where p, q ≥ 0. Note that either A or B or both can
be empty lists, when procedure stab terminates before entering the body of the
main while loop (line 3 of Algorithm 3). The bottom and top y-coordinates of
each interval are denoted by the superscripts ℓ and h respectively. For example,
aℓ

i denotes the lower endpoint of interval ai and bh
j denotes the upper endpoint

of interval bj . The procedure call reportPair(ar
i , b

r
k) reports the rectangle pair

ar
i and br

k which have the intersecting y-intervals ai and bk respectively. Subsets
of rectangles S12 and S22 and those of S21 and S11 are intersecting in the x-
dimension by their definition in Steps 2 and 3 of Algorithm 2, therefore procedure
stab correctly reports pairwise intersections between them. We only need to
show that stab(S12, S21) also reports the correct intersections.

procedure stab(A, B)
i := 1; j := 1
while i ≤ |A| and j ≤ |B|

if aℓ
i < bℓ

j then

k := j

while k ≤ |B| and bℓ
k < ah

i

reportPair(ar
i , br

k)
k := k + 1

i := i + 1
else

k := i

while k ≤ |A| and aℓ
k < bh

j

reportPair(br
j , ar

k)
k := k + 1

j := j + 1

Algorithm 3: Finding pairwise intersections between two lists of intervals



Lemma 1. Two rectangles r and s, where r ∈ S12 and s ∈ S21, intersect if and

only if the y-projection of r intersects the y-projection of s.

Proof: Two rectangles intersect if and only if they intersect in each dimension,
therefore we only need to show that r and s intersect in the x-dimension, i.e.,
there exists a vertical line that intersects both r and s. Such a vertical line is
the one that separates subsets V1 and V2. 2

The usual assumption is that rectangle-intersection algorithms write their
output in O(k) time, and the space requirement of the output is not counted [8–
16]. There are several data structures suitable for set representation with O(1)
amortized time for insert ; probably the best known are Fredman and Tarjan’s
Fibonacci heaps [18]. Using such a data structure, the output set will contain
the result without duplicates. Listing the result is particularly easy if the set is
represented by a linear array [19]. Our main result is as follows.

Theorem 1. All k intersecting pairs of a set of n isothetic rectangles can be

reported by using linear arrays only in O(n log n + k) time and O(n) space,

which are the best possible under the algebraic RAM model of computation.

Proof : Let us suppose that n is a power of 2 and all x- and y-coordinates
are distinct. Lists V and H in Algorithm 1 can be implemented by a 2n- and an
n-element linear array respectively. Both V and H can be sorted in O(n log n)
time. V1 and V2 in Step 1 of Algorithm 2 can be determined as subranges of
the linear array, input V , in constant time. Steps 2 and 3 can be implemented
simultaneously in linear time by scanning first V1, then V2. While scanning V1

if we find a right edge, the corresponding rectangle belongs to S11, otherwise
(i.e., when we find a left edge) if the corresponding right edge is to the right of
V2, the rectangle will be assigned to S12. Similarly, while scanning V2 if we find
a left edge, the corresponding rectangle belongs to S22, otherwise if the other
edge is to the left of V1, the rectangle will be assigned to S21. While doing the
scanning, we count the elements in each subset and mark the relevant intervals
in H accordingly. Once the scanning of both V1 and V2 are completed, we can
build the four subsets of rectangles, representing each rectangle by its vertical
interval and keeping their sorted order in H . Step 4 of Algorithm 2 splits the
linear array H for the two recursive calls, keeping the sorted order, which can
also be done in linear time. The running time T (2n) of Algorithm 2 — without
the calls to procedure stab — can be expressed by the recurrence relation

T (2n) = T (n) + cn,

where c is a positive constant, which has the solution T (2n) =O(n log n). Each
call to procedure stab takes time proportional to the number of intersections
reported by that call. Each intersection is reported at most twice, hence the total
time taken by procedure stab is O(k). A naive implementation of detect would
also take O(n log n) space if always new storage were allocated for the subsets
Sij , i, j ∈ {1, 2}. However, the space of Sij can be reused by the subsequent
recursive calls, therefore the space requirement of detect, and that of the whole



algorithm, is O(n). Regarding optimality, the space optimality is trivial. As to
the time optimality, the element-uniqueness problem, for which an Ω(n log n)
lower bound holds in the algebraic RAM model [20], is linear-time reducible to
the rectangle-intersection problem [11], which completes the proof. 2

4 Sorting the Result in Linear Time

Getting the output in sorted order, i.e., the ID numbers of the rectangles inter-
secting the first one in increasing order, then those intersecting the second one
in increasing order again etc, is sometimes a requirement. Trivial examples are
verifying the implementations of rectangle-intersection algorithms or checking if
duplicates are properly eliminated. By using the find-min and delete-min opera-
tions of the data structures introduced in Section 3, we would get the output in
sorted order in O(k log k) time. The best known integer-sorting algorithm [21]
would provide the result in O(k log log k) time. However, we can demonstrate
that the output can be sorted in linear time.

Theorem 2. The output of any rectangle-intersection algorithm can be sorted

in O(n+k) time, where n is the number of input rectangles and k is the number

of intersecting rectangle pairs.

Proof : Without loss of generality, we can assume that the output of any
rectangle-intersection algorithm is a list of k pairs of integers, each pair i, j

representing an intersecting rectangle pair, 1 ≤ i, j ≤ n, i < j and 0 ≤ k ≤
(

n

2

)

.
First we sort the output list by the second element, j, of each pair in non-

decreasing order with the help of an n-element array by using bucket sort. The
buckets can be represented by linked lists. Next we sort the list obtained in the
first step by the first elements, i, again in non-decreasing order by using bucket
sort. The two steps take O(n + k) time in total, which completes the proof. 2

Instead of writing the output in the data structures introduced in Section 3,
we can also sort the result as above, and then the duplicates can be removed in
O(k) time by traversing the sorted list.

5 Java Implementation

Linked lists are easy to implement in practice, but new objects need to be created
for each data element as a list node, which results in extra time requirement when
temporary data sets are dynamically created and destroyed, as is the case with
the Lee [13] and Güting-Schilling [15] algorithms (assuming these algorithms
could be rectified). Though list nodes can be created in an array in advance and
re-used as needed, the allocation of list nodes further complicates the algorithm.
An algorithm based inherently on linear arrays is clearly an advantage.

We prepared a prototype Java implementation of the proposed algorithm,
consisting of several classes, including BoxDemo and BoxTest. BoxDemo can take
input from the command line or can generate random input. BoxTest implements



report as a public static method, detect and stab as private methods and takes
94 lines of Java code. A sample of 10 random rectangles is given in Table 2 which
has three intersecting pairs: 3-4, 3-6 and 8-9, correctly found by our algorithm.
A Java window displaying the 10 rectangles is also given in Fig. 2.

id 1 2 3 4 5 6 7 8 9 10

xl 235 98 170 161 156 196 46 28 29 120
xr 273 120 248 183 210 234 88 64 103 142
yt 192 67 124 152 233 166 89 166 148 204
yb 230 77 182 206 269 182 147 192 206 218

Table 2. 10 random rectangles

Fig. 2. The 10 rectangles given in Table 2

6 Concluding Remarks

Bounding rectangles are widely used to speed up algorithms for rendering,
modelling and animation. Recent research demonstrated that the number of
bounding-box intersections is proportional to the number of actual object inter-
sections, assuming that the aspect ratio of each object and the size disparity of
objects are bounded by constants [7]. For the practical application of this result,
an optimal rectangle-intersection algorithm is needed that can be implemented
efficiently. We have proposed such an algorithm that uses linear arrays only and
requires only a small number of objects in a Java implementation.
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