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Abstract. Though in the past few decades much effort has been de-
voted to reporting all k intersecting pairs in a planar set of n iso-oriented
rectangles, all the known algorithms using elementary data structures,
such as linked lists, are either not optimal, report some intersections
repeatedly or fail to report some altogether. We propose a simpler al-
gorithm that uses only linear arrays and that takes O(nlogn + k) time
and O(n) space, which are the best possible under the algebraic RAM
model of computation. Our algorithm is designed for systems with lim-
ited resources, such as mobile 3D graphics, and can be implemented in
less than 100 lines of Java code.

1 Introduction

Bounding rectangles are commonly used to speed up algorithms for rendering,
modelling and animation [1-5]. Worst-case analysis often fails to predict the ac-
tual behaviour of the running time of geometric algorithms in practice, mainly
because worst-case scenarios are often very artificial and do not occur in prac-
tice, therefore realistic input models are considered [6]. Suri et al [7] analyzed
intersections among geometric objects in terms of two parameters: «, an upper
bound on the aspect ratio or elongatedness of each object; and o, an upper
bound on the size disparity between the largest and smallest objects. If a and o
are constants, the number of bounding-box intersections is proportional to the
number of actual object intersections [7]. Therefore, finding rectangle intersec-
tions quickly could considerably speed up rendering in graphics systems with
limited resources in general and in embedded systems in particular.

We consider the following problem: Given n rectangles with parallel sides
in the plane, report all pairs having at least one point in common. Theoretical
solutions have been known for many years, but rely heavily on sophisticated data
structures, such as range trees or segment trees [8—12].

A new approach, based on the divide-and-conquer, rather than the plane-
sweep paradigm was attempted by Lee [13]. Unfortunately, Lee’s approach is
faulty, and we feel it cannot even be rectified. Another divide-and-conquer ap-
proach proposed by Giiting and Wood [14] was attempted to be exploited by
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by Giiting and Schilling [15] to provide a practical algorithm using linked lists
only. However, their algorithm fails to report some intersecting pairs and reports
other pairs twice as we are going to demonstrate. Motivated by the practical im-
portance of the problem, Zomorodian and Edelsbrunner [16] also proposed a
algorithm recently. Though experimental evidence is provided that their algo-
rithm performs well in practice, unfortunately it is not optimal [17].

In Section 2 we briefly summarize the Giiting-Schilling algorithm, giving rea-
sons why it cannot report all intersections and a counter-example to demonstrate
that the method they proposed to eliminate duplicates fails. In Section 3 we pro-
pose a simpler and more efficient algorithm using linear arrays only, and prove
that the proposed algorithm is optimal. Finally we give a brief reference to a
prototype Java implementation to demonstrate that our algorithm is not only
feasible, but also easy to implement in practice.

2 The Giiting-Schilling Algorithm

The algorithm is based on separational representation, originally suggested by
Giiting and Wood [14]. The idea is that each rectangle is represented twice: by
its left and right vertical edges. After pre-sorting all vertical edges of a list of
rectangles by x-coordinates, it is easy to achieve a balanced recursive subdivision.

The main procedure takes a set S of n iso-oriented rectangles as an input,
and it claims to produce all pairs of intersecting rectangles as an output. First it
creates a list V' of the 2n vertical edges in non-decreasing order of z-coordinates.
Finally it calls a recursive procedure R(V, L, R, C), where the set V is an input
parameter and the sets L, R and C are output parameters generated by the
procedure itself. The output parameters L, R and C of R are discarded after
the first (top-level) call of R, and only used after subsequent recursive calls.
Before further explaining the sets L, R and C', we need a definition.

Definition 1 A rectangle is represented in a set of vertical edges V if and only
if at least one of its vertical edges is in V.

The set L (for left) is the set of y-projections of all rectangles represented in
V only by their left edge. Similarly, set R (for right) is the set of y-projections
of all rectangles represented in V' only by their right edge. Finally, set C' (for
complete) is the set of y-projections of all rectangles represented in V' by both
their left and right edges.

For the basis of recursion by procedure R, assume that V' contains only one
element, v = (z, side, id, yp, y:), where z is the z-coordinate of vertical edge v,
side is LEFT or RIGHT, ¢d is an integer identifying the rectangle with edge v
and finally y, and y;, respectively, are the bottom and top y-coordinate of the
rectangle. If side = LEFT, then L = v, R = () and C' = ), otherwise (if side =
RicHT) L =0, R=v and C = 0.

If V' contains more than one element, procedure R finds a vertical line ¢ that
splits the x-ordered input set V' in two subsets V; and Vs of approximately equal



size. Subset Vj is to the left, and subset V5 is to the right of £. In the next step
R calls itself recursively as R(Vi, L1, Ry, C1) and R(Va, Lo, Ra, Co).

As a recursive invariant we assume that, after completion, R reports all
pairwise intersections of the rectangles represented in its input set (e.g., by writ-
ing them into memory or a disk file). In the rest of procedure R we only need
to report intersections between rectangles represented in Vi but not in V5 and
intersections between rectangles represented in V2 but not in V.

Considering a rectangle r represented in V; but not in V5, there are two
cases: 1) the right edge of r is either in V4 or 2) it is beyond to the right of all
edges in V5. Let A; and By be the set of rectangles belonging to cases 1 and
2 respectively. Similarly, for the rectangles represented in Vo but not in V; let
Ay be the set of rectangles with left edges in V5, and By the set of rectangles
with left edges beyond to the left of all edges in V7. According to Giiting and
Schilling’s terminology, each rectangle in B; spans subset V; and therefore all
rectangles in A;. Similarly, each rectangle in By spans all rectangles in As.

The crucial observation is that any rectangle b in B; intersects all rectangles
in A; with y-projection intersecting the y-projection of b. The same is true for the
sets Ay and Bs. The Giiting-Schilling algorithm proposes reporting intersections
only between rectangles in A; and B; and intersections between rectangles in Ao
and By (in Step 4 of the recursive procedure on the top of page 100 [15]). Note,
however, that rectangles in B; and By may also intersect, hence the Giiting-
Schilling algorithm fails to report all intersecting pairs.

Since only the y-projections need to be checked, the problem is reduced to
a one-dimensional one. Giiting and Schilling define (without giving the details)
an intersection operation ® for two sets of rectangles A and B as

A® B :={(a,b)|a € A,b € B and the y-projections of ¢ and b intersect}

where for any pair (a,b), a € A,b € B, a and b are represented in different sets of
vertical edges. The two recursive calls of R produce six sets, L1, R1,C1, L2, Ro
and Cs, from which the intersecting pairs not reported by the two recursive calls
need to be computed and reported, and also the output sets L, R and C need to
be computed. Procedure R continues as follows.

First all rectangles represented in both V; and V5 are removed by computing
the sets X = L1 N Re, B1 = Ry \ X and By = L7 \ X. It is easy to see that
Ry \ X is the set of y-projections of right edges with no matching left edges in
V1 and V, hence Ry \ X spans V;. For similar considerations L; \ X spans V5.

As arbitrary elements are removed, the six sets must be represented by linked
lists [15]. Set V, created in the main procedure, can be represented by a linear ar-
ray with elements sorted in non-decreasing order. During recursive calls, indices
marking subranges of this array can be passed down.

Set Aj, introduced earlier, corresponds to Ry U C1, i.e., to all the rectangles
with right edges in V7, and similarly set As corresponds to Lo U Cy. However, it
should be noted that A® B can only be computed in linear time of its input and
output size if A and B are available in sorted order. Therefore we need the six
sets, L1, R1,C1, Lo, Ry and C5 in sorted order by the y; field of their elements.



(If there are equal y; fields, the id fields can be used as a tie-break.) A procedure,
called LISTMERGE, also needed for merging sorted lists. A; and A, should now
be computed as A; = LISTMERGE(R;,C1) and Ay = LISTMERGE(Lqo, Cs).

Then we can compute and report the sets A1 ® B; and As ® By. Finally
we compute the output parameters of R as L = LISTMERGE(Ls, Bs), R =
L1STMERGE(R;, B1), C' = LISTMERGE(C1, C3) and C' = LISTMERGE(C’, X).

The algorithm presented above not only misses some intersecting pairs, but it
may report some pairs twice. To avoid the latter problem, Giiting and Schilling
propose a modified recursive invariant: after completion R reports all pairwise
intersections in its input set if and only if least one of the rectangles in the pair
is represented by its left edge [15]).

We give a counter-example, with only three rectangles, to demonstrate that
the algorithm with the modified recursive invariant may not report valid inter-
sections. Let us consider the input given in Table 1 and shown in Fig. 2. There

id| x| xr| ye| yb
1/107|175|103|151
2(184(274|111|197
3(213(249|128|176

Table 1. Input for a counter-example

| input rectangles EJE'E'

Fig. 1. The three rectangles given in Table 1

is only one intersecting pair, rectangles 2 and 3. The z-coordinates of set V for
the first call of R are as follows:

107, 175, 184, 213, 249, 274

and in the third call, V5 will have the z-coordinates 213, 249 and 274. A further
subdivision might be 213 and 249 on the left-hand, and 274 on the right-hand



side. After the completion of these recursive calls, A; will contain rectangle 2,
represented by its right vertical edge at x = 249 and B; will contain rectangle 3,
represented again by its right vertical edge at © = 274. Though rectangles 2 and
3 have a valid intersection, it cannot be reported due to the modified recursive
invariant, because both rectangles represented only by their right edges.

If the subdivision of the set of vertical edges the z-coordinates 213, 249 and
274 were that 213 is on the left-, and 249 and 274 are on the right-hand side, the
algorithm would proceed slightly differently, but the result would be the same;
the pair 2,3 would not be reported.

3 The Proposed Algorithm

Though the first problem of the Giiting-Schilling algorithm, i.e., missing some of
the intersecting pairs, could be corrected, the algorithm remains inefficient from
a practical point of view. First, it requires the merging of linked lists at each
level of the recursion. Second, computing and then discarding the large sets L,
R and C after the top-level call of R is wasteful.

We propose a much simpler and more efficient algorithm. One of the novelties
of our algorithm is based on the observation that in practice it is always more
efficient to split a sorted list than merging two sorted lists. This observation
also gives us the possibility of implementing the algorithm by using linear arrays
only. Our algorithm consists of three procedures.

The main procedure, called report, given as Algorithm 1, takes a set .S of n
iso-oriented rectangles as an input, then it calls a recursive procedure, detect,
given as Algorithm 2. Procedure detect finds subsets of rectangles intersecting
in the z-dimension and calls a third procedure stab on pairs of such subsets.
Eventually procedure stab, given as Algorithm 3, reports all pairs of intersecting
rectangles as the output.

procedure report(S,n)
1 Let V be the list of z-coordinates of the 2n vertical edges of the n rectangles
in S sorted in non-decreasing order.
2 Let H be the list of n y-intervals corresponding to the bottom and top
y-coordinates of each rectangle.
3 Sort the elements of H in non-decreasing order by their bottom y-coordinates.
4 Call procedure detect(V, H,2n).

Algorithm 1: The main procedure

Procedure stab finds pairwise intersections between y-intervals of rectangles
belonging to two different sets. We solve this problem as two symmetric batched
stabbing problems: given a list of points and a list of intervals, for each interval
report all the points contained by it. The points are the low endpoints of each
set of intervals in turn. Let A and B be two lists of y-intervals ai,as,...,ap



procedure detect(V, H,m)
if m < 2 then return
else
1 let Vi be the first [m/2]| and let Vi be the rest of the vertical edges
in V in the sorted order
2 let S11 and Sa2 be the set of rectangles represented only in Vi and Vs
but not spanning V2 and Vi, respectively
3 let S12 be the set of rectangles represented only in V7 and spanning Va;
let S21 be the set of rectangles represented only in V5 and spanning V4
4 let H1 and H2 be the list of y-intervals corresponding to the elements
of Vi and V5 respectively
5 Stab(Slg, Sgg); Stab(Sgl, Sll); Stab(Slg7 521)
6 detect(V1, Hi, |m/2]); detect(Va, Ha,m — |m/2])

Algorithm 2: Finding subsets of rectangles intersecting in the z-dimension

and by, b, ..., by respectively, sorted by their lower endpoint in non-decreasing
order. |A| = p and |B| = ¢, where p, ¢ > 0. Note that either A or B or both can
be empty lists, when procedure stab terminates before entering the body of the
main while loop (line 3 of Algorithm 3). The bottom and top y-coordinates of
each interval are denoted by the superscripts £ and h respectively. For example,
af denotes the lower endpoint of interval a; and b;? denotes the upper endpoint
of interval b;. The procedure call reportPair(a}, b)) reports the rectangle pair
a; and by, which have the intersecting y-intervals a; and by, respectively. Subsets
of rectangles S1o and Soy and those of So; and S7; are intersecting in the z-
dimension by their definition in Steps 2 and 3 of Algorithm 2, therefore procedure
stab correctly reports pairwise intersections between them. We only need to
show that stab(S12, S21) also reports the correct intersections.

procedure stab(A, B)
1:=1;7:=1
while ¢ < |A| and j < |B|
if af < bf- then
k=7
while k < |B| and b}, < a?
reportPair(aj, by,)

k:=k+1
=1+ 1
else
k:=1

while k < |A| and af, < b"
reportPair (b}, ay,)
k=k+1

ji=j41

Algorithm 3: Finding pairwise intersections between two lists of intervals



Lemma 1. Two rectangles v and s, where r € S12 and s € Sa1, intersect if and
only if the y-projection of r intersects the y-projection of s.

Proof: Two rectangles intersect if and only if they intersect in each dimension,
therefore we only need to show that r and s intersect in the z-dimension, i.e.,
there exists a vertical line that intersects both r and s. Such a vertical line is
the one that separates subsets V4, and V5. O

The usual assumption is that rectangle-intersection algorithms write their
output in O(k) time, and the space requirement of the output is not counted [8—
16]. There are several data structures suitable for set representation with O(1)
amortized time for insert; probably the best known are Fredman and Tarjan’s
Fibonacci heaps [18]. Using such a data structure, the output set will contain
the result without duplicates. Listing the result is particularly easy if the set is
represented by a linear array [19]. Our main result is as follows.

Theorem 1. All k intersecting pairs of a set of n isothetic rectangles can be
reported by using linear arrays only in O(nlogn + k) time and O(n) space,
which are the best possible under the algebraic RAM model of computation.

Proof: Let us suppose that n is a power of 2 and all z- and y-coordinates
are distinct. Lists V and H in Algorithm 1 can be implemented by a 2n- and an
n-element linear array respectively. Both V' and H can be sorted in O(nlogn)
time. V7 and V5 in Step 1 of Algorithm 2 can be determined as subranges of
the linear array, input V, in constant time. Steps 2 and 3 can be implemented
simultaneously in linear time by scanning first V;, then V5. While scanning V
if we find a right edge, the corresponding rectangle belongs to 511, otherwise
(i.e., when we find a left edge) if the corresponding right edge is to the right of
V5, the rectangle will be assigned to Si2. Similarly, while scanning V5 if we find
a left edge, the corresponding rectangle belongs to Sos, otherwise if the other
edge is to the left of V7, the rectangle will be assigned to So;. While doing the
scanning, we count the elements in each subset and mark the relevant intervals
in H accordingly. Once the scanning of both V; and V5 are completed, we can
build the four subsets of rectangles, representing each rectangle by its vertical
interval and keeping their sorted order in H. Step 4 of Algorithm 2 splits the
linear array H for the two recursive calls, keeping the sorted order, which can
also be done in linear time. The running time 7'(2n) of Algorithm 2 — without
the calls to procedure stab — can be expressed by the recurrence relation

T(2n) =T(n) + cn,

where ¢ is a positive constant, which has the solution T'(2n) =0O(nlogn). Each
call to procedure stab takes time proportional to the number of intersections
reported by that call. Each intersection is reported at most twice, hence the total
time taken by procedure stab is O(k). A naive implementation of detect would
also take O(nlogn) space if always new storage were allocated for the subsets
Sijs 1,J € {1,2}. However, the space of S;; can be reused by the subsequent
recursive calls, therefore the space requirement of detect, and that of the whole



algorithm, is O(n). Regarding optimality, the space optimality is trivial. As to
the time optimality, the element-uniqueness problem, for which an 2(nlogn)
lower bound holds in the algebraic RAM model [20], is linear-time reducible to
the rectangle-intersection problem [11], which completes the proof. O

4 Sorting the Result in Linear Time

Getting the output in sorted order, i.e., the ID numbers of the rectangles inter-
secting the first one in increasing order, then those intersecting the second one
in increasing order again etc, is sometimes a requirement. Trivial examples are
verifying the implementations of rectangle-intersection algorithms or checking if
duplicates are properly eliminated. By using the find-min and delete-min opera-
tions of the data structures introduced in Section 3, we would get the output in
sorted order in O(klogk) time. The best known integer-sorting algorithm [21]
would provide the result in O(kloglogk) time. However, we can demonstrate
that the output can be sorted in linear time.

Theorem 2. The output of any rectangle-intersection algorithm can be sorted
in O(n+k) time, where n is the number of input rectangles and k is the number
of intersecting rectangle pairs.

Proof: Without loss of generality, we can assume that the output of any
rectangle-intersection algorithm is a list of k pairs of integers, each pair i,j
representing an intersecting rectangle pair, 1 <, <n,i<jand 0 <k < (Z)

First we sort the output list by the second element, j, of each pair in non-
decreasing order with the help of an n-element array by using bucket sort. The
buckets can be represented by linked lists. Next we sort the list obtained in the
first step by the first elements, i, again in non-decreasing order by using bucket
sort. The two steps take O(n + k) time in total, which completes the proof. O

Instead of writing the output in the data structures introduced in Section 3,
we can also sort the result as above, and then the duplicates can be removed in
O(k) time by traversing the sorted list.

5 Java Implementation

Linked lists are easy to implement in practice, but new objects need to be created
for each data element as a list node, which results in extra time requirement when
temporary data sets are dynamically created and destroyed, as is the case with
the Lee [13] and Giiting-Schilling [15] algorithms (assuming these algorithms
could be rectified). Though list nodes can be created in an array in advance and
re-used as needed, the allocation of list nodes further complicates the algorithm.
An algorithm based inherently on linear arrays is clearly an advantage.

We prepared a prototype Java implementation of the proposed algorithm,
consisting of several classes, including BoxDemo and BoxTest. BoxDemo can take
input from the command line or can generate random input. BoxTest implements



report as a public static method, detect and stab as private methods and takes
94 lines of Java code. A sample of 10 random rectangles is given in Table 2 which
has three intersecting pairs: 3-4, 3-6 and 8-9, correctly found by our algorithm.
A Java window displaying the 10 rectangles is also given in Fig. 2.

| 1| 2| 3| 4] 5| 6] 7| 8 9| 10
1|235| 98|170{161|156(196| 46| 28| 29|120
Tr|273(120|248|183|210|234| 88| 64|103]|142
Y [192] 67]|124|152(233|166| 89[166|148(204
Yp|230| 77|182{206|269|182{147|192|206|218

Table 2. 10 random rectangles

£ 10 random rectangles EI@|E|

Fig. 2. The 10 rectangles given in Table 2

6 Concluding Remarks

Bounding rectangles are widely used to speed up algorithms for rendering,
modelling and animation. Recent research demonstrated that the number of
bounding-box intersections is proportional to the number of actual object inter-
sections, assuming that the aspect ratio of each object and the size disparity of
objects are bounded by constants [7]. For the practical application of this result,
an optimal rectangle-intersection algorithm is needed that can be implemented
efficiently. We have proposed such an algorithm that uses linear arrays only and
requires only a small number of objects in a Java implementation.
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